cho \(\frac{q+c}{b+d}\frac{a-c}{b-d}\) ( với a,b,c khác 0 và b khác cộng trừ d)
Chứng minh rằng: \(\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\frac{a}{b}\right)^{2009}\)
Cho hàm số f(x)=\(\frac{10^{2x}}{10^{2x}+10}\)
a)CMR:Nếu a,b là hai số thỏa mãn a+b=1thì f(a)+f(b)=1
b)Tính tổng:\(f\left(\frac{1}{2009}\right)+f\left(\frac{2}{2009}\right)+...+f\left(\frac{2008}{2009}\right)\)
Cho 3 số a,b,c khác 0 sao cho \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Tính giá trị biểu thức \(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Bài 1: Tìm x
A)2\(|\frac{3}{4}\)X + 1\(|\) + \(|\frac{-5}{4}\)\(|\) = 0
B)\(||2x-1|+x|=2\)
C)\(|2x+1|-|x-2|=5\)
D) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{\frac{x}{2}.\left(x+1\right)}=\frac{2009}{2011}\)
Bài 2: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:
a)\(\frac{a+2c}{b+2d}=\frac{4a-3c}{4b-3d}\)
b)\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Bài 3:
Cho \(\frac{a}{b}=\frac{3}{4}\). Tính A=\(\frac{a^2+3b^2}{a^2-3b^2}\)
Các bạn giúp mình với ạ, mình đang cần gấp. Cảm ơn nhiều.
tìm x biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
Thực hiện phép tính :
a, \(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
b, \(P=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
Bài 1 :
a ) Tính \(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
b ) Tìm x biết :
\(\left|\left(3x-3\right)+2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
Bài : 2
a ) Cho a,b,c là các số thực khác 0 . Tìm các số thực x,y,z khác 0 thỏa mãn
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Bài 3 . Tìm GTNN của biểu thức :
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
tìm x biết
a) \(\frac{x-1}{x+2}=\frac{4}{5}\left(x\ne-2\right)\) b)22x+1+4x+3=264 c)\(\frac{x^2}{-8}=\frac{27}{x}\left(x\ne0\right)\) d)\(\frac{x+7}{-20}=\frac{-5}{x+7}\left(x\ne-7\right)\) e)\(\frac{x}{-8}=\frac{2}{-x^3}\left(x\ne0\right)\)
cho \(\frac{a}{b}=\frac{c}{d}\left(b,c,d\ne0;c-2d\ne0\right)\)
chứng minh rằng \(\frac{\left(a-2b^4\right)}{\left(c-2d^4\right)}=\frac{a^4+2017b^4}{c^4+2017d^a}\)