Cho hàm số f(x)=100x/100x+10
a)Chứng tỏ rằng nếu a,b là hai số thỏa mãn a+b=1 thì f(a)+f(b)=1
b)Tính tổng A=\(f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+...+f\left(\frac{2006}{2007}\right)\)
a,A=2|3x-2|+1 b,B=5|1-4x|-1
c,C=10-4|x-2| d,D=\(\frac{5,8}{\left|2,5-x\right|+5,8}\)
e,E=\(\frac{1}{\left|x-2\right|+3}\) f,F=5-|2x-1|
Tên Bài : tìm giá trị lớn nhất của biểu thức trị tuyệt đối
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức A = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+2019\)
Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)
Cho hàm số f(x)=\(\frac{2x+1}{x^2\left(x+1\right)^2}\). Tìm các số nguyên dương x,y sao cho
s=f(1)+f(2)+f(3)+...+f(x)=\(\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}\)-19+x
Bài 1: a) tìm giá trị nhỏ nhất của biểu thức: A=\(\left|3x-2\right|+\left|3x-5\right|\)
b) Tìm hàm số f(x) biết: \(f\left(\frac{2x+1}{x-3}\right)=\frac{x+2}{x-2}\) (x\(\ne2\);x\(\ne3\))
Cho hai đa thức \(P\left(x\right)=2x^4-x^3+\frac{3}{4}x^2+2x+1,25\)
và \(Q\left(x\right)=2x^4-\frac{1}{4}x^2-\frac{3}{4}-x^3\)
a) Tìm đa thức F(x) sao cho P(x)-F(x)=Q(x)
b) Chứng tỏ rằng đa thức F(x) không thể nhận giá trị bằng 0 với mọi giá trị của x
Bài 1 Cho x và y là hai đại lượng tỉ lệ nghịch: x1, x2 là hai góa trị của x, y1, y2 là hai giá trị của y. Tính y1, y2 biết y12+y22=52, x1=3, x2=2
Bài 2: Tính
M = x+y+z biết \(\frac{133}{10}=\frac{19}{x+y}+\frac{19}{z+y}+\frac{19}{x+z}=\frac{7x}{z+y}+\frac{7y}{x+z}=\frac{7z}{x+y}\)
Bài 3
a. Cho hàm số f(x) thỏa mãn điều kiện:\(\left(2-x\right)f\left(x\right)-xf\left(-x\right)=4-x^2\forall x\in R\). Tính f(-3)
b. Vẽ đồ thị hàm số y=|x|-2x. Xác định a để điểm A(\(a^2;-81\)) thuộc đồ thị hàm số trên.
Bài 1: Thu gọn các đơn thức, xác định hệ số, phần biế, tìm bậc của các đơn thức sau:
a, \(A=\frac{2}{3}x^2y.\left(-\frac{3}{4}y\right).\left(-x^2\right)\)
b, \(C=0,12y^2.\left(-1\frac{1}{3}xy\right)^2.\left(-xy\right)^3\)
c, \(E=1,2.\left(-xy^2\right)^3.\left(-\frac{3}{5}y^2\right).\left(-0,5x^2y^3\right)^2\)
d, \(B=\frac{11}{12}\left(y^2\right)^3.\left(-\frac{1}{33}x^3\right).\left(-x\right)^2\)
e, \(D=2x^3y.\left(-\frac{1}{2}xy\right)^3.x^2y\)
f, \(F=-2\frac{1}{3}x^3z^2.\left(\frac{1}{3}xy^2z\right)^2.\left(6xyz\right)\)