Ta có
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=> \(\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
\(\Rightarrow\begin{cases}x=18\\y=16\\z=15\end{cases}\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\)
Áp dụng tc dãy tỉ
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
Với \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)Với \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)Với \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)
Suy ra:
\(\frac{12x}{18}=12\Rightarrow12x=216\Rightarrow x=18\)
\(\frac{12y}{16}=12\Rightarrow12y=192\Rightarrow y=16\)
\(\frac{12z}{15}=12\Rightarrow12z=180\Rightarrow z=15\)
Vậy \(x=18;y=16;z=15\)