Cho đường tròn(O;R) có hai đường kính AB và CD vuông góc với nhau.Trên đoạn thẳng AB lấy một điểm M(khác O).Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N.Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn (O) ở điểm P.Chứng minh rằng:
a)Tứ giác OMNP nội tiếp được
b)Tứ giác CMPO là hình bình hành
c)Tích CM.CN không phụ thuộc vào vị trí của điểm M trên đoạn thẳng AB
a: góc OMP=góc ONP=90 độ
=>OMNP nội tiếp
b: MP//OC(cùng vuông góc AB)
=>góc MCO=góc NMP
góc NMP=góc MNO
=>góc MNO=góc MCO
=>góc MNO=góc ODN
=>CM//OP
Xét tứ giác CMPO có
CM//PO
CO//PM
=>CMPO là hình bình hành
c: Xét ΔCOM vuông tại O và ΔCND vuông tại N có
góc OCM chung
=>ΔCOM đồng dạng với ΔCND
=>CO/CN=CM/CD
=>CN*CM=CO*CD=2R^2 ko phụ thuộc vào vị trí của M