Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyển AB, AC của đường tròn (O) với B và C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt đường tròn (0) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm ED. a/ Chứng minh A, B, O, K, C nằm trên đường tròn b/ Chứng minh AE. AD= AC.AC c/ Vẽ OK cắt BC tại F. Chứng minh FD là tiếp tuyển của đường tròn (O).
a: ΔODE cân tại O
mà OK là trung tuyến
nên OK vuông góc DE
góc OKA=góc OBA=góc OCA=90 độ
=>O,K,C,A,B cùng thuộc 1 đường tròn
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC/AD=AE/AC
=>AC^2=AD*AE
c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có
góc O chung
=>ΔOKA đồng dạng với ΔOHF
=>OK/OH=OA/OF
=>OK*OF=OH*OA=OE^2=OD^2
=>FD là tiếp tuyến của (O)