Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ
Cho đường tròn tâm O, đường kính AB= 2R. Gọi d1 và d2 lần lượt là các tiếp tuyến của đường tròn (O) tại A và B . I là trung điểm của đoạn thẳng OA, E là điểm thuộc đường tròn (O) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt d1, d2 lần lượt tại M, N. 1. Chứng minh: AMEI là tứ giác nội tiếp.
Cm AMI=BIN
Cm; IB.NE=3.IE.NB
Cho đường tròn tâm O, bán kính AB = 2R. Gọi d1, d2 lần lượt là các tiếp tuyến của đường tròn O tại A và B. I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn O sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với EI, cắt 2 đường thẳng d1, d2 tại M và N.
1. Chứng minh AMEI là tứ giác nội tiếp
2. Chứng minh IB.NE = 3.IE.NB
3. Khi E thay đổi, chứng minh tích AM.BN có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R
Cho đường tròn (O; R), một điểm A nằm ngoài đường tròn, một đường thẳng d vuông góc với OA tại A, đường thẳng OA cắt (O) tại B và C (B nằm giữa O và A). Từ C vẽ tia Cx cắt (O) tại D và cắt d tại E.
a) Chứng minh rằng CB.CA = CD.CE
b) Cho ACE=30 độ , OA = 2R. Tính CE và AE theo R
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
cho nửa đường tròn (O,R), đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt (O) tại điểm C. Trên cung CB lấy 1 điểm M bất kì. Kẻ Ch vuông góc với AM tại H. Gọi N là giao điểm của OH và MB
a) CM tứ giác CHOA nội tiếp
b) CM: góc CAO=góc ONB=45độ
c) OH cắt CB tại I và MI cắt đường tròn (O) tại điểm thứ hai là D. CM: CM//BD
d) Xác định vị trí của M để ba điểm D,H, B thẳng hàng
Giúp với, trừ câu a
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME
Cho đường tròn tâm (O), đường kính bằng 6cm và điểm A sao cho OA = 6cm. Vẽ tiếp tuyến Ab với đường tròn (O) (B là tiếp điểm). Vẽ dây BC vuông góc với OA tại I
a) Tính độ dài AB, BI
b) Chứng minh AC là tiếp tuyến của (O)
c) Đoạn thẳng OA cắt đường tròn (O) tại M. Qua m vẽ tiếp tuyến với (O). Tiếp tuyến này cắt AB, AC lần lượt tại D và E. Tính số đo góc DOE