a: \(MA=3\sqrt{3}\left(cm\right)\)
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
a: \(MA=3\sqrt{3}\left(cm\right)\)
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)
từ điểm M nằm ngoài đường tròn(O,R) vẽ hai tiếp tuyến MA ,MB với(O,R) (A,B là hai tiếp điểm)
a chứng minh MO vuông AB tại H
b Vẽ đường kính AC của (O,R) Và MC cắt (O) tại D Chứng minh ADC bằng 90 độ và tam giác MHD bằng tam giác MCO
c Gọi K là giao điểm của MC và AB ,AD cắt OM I. Chứng minh KIsong song AC giúp với đang cần gấp
Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua kẻ hai tiếp tuyến MA,MB phân biệt đến đường tròn ( A,Blà các tiếp điểm)
a) Chứng minh tứ giác MAOB nội tiếp
b) Đường thẳng MO cắt đường tròn lần lượt tại hai điểm C,D phân biệt sao cho MC<MD . Chứng minh: MA.DA=MD.AC
c) Đường thẳng BO cắt đường tròn tại điểm thứ hai là E. Kẻ AI vuông góc với BE tại I. Đường thẳng ME cắt AI tại K, đường thẳng MO cắt AB tại H. Chứng minh hai đường thẳng HK và BE song song.
Cho 1 điểm M nằm bên ngoài đường tròn (O; 6cm). Kẻ hai tiếp tuyến MN, MP (N, P là hai tiếp điểm) của đường tròn (O). Vẽ cát tuyến MAB của đường trong (O) sao cho đoạn thẳng AB=6cm với A, B thuộc đường tròn (O), A nằm giữa M và B.
a) Chứng minh tứ giác OPMN là tứ giác nội tiếp
b) Gọi H là trung điểm đoạn thẳng AB. So sánh góc MON và góc MHN
c) Tính diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của hình tròn tâm (O)
Câu 7(2 điểm): Từ điểm M ở ngoài đường tròn (O) v tilde e các tiếp tuyến MA, MB với (O). Vẽ đường kính AC, tiếp tuyến tại C của đường tròn (O) cắt AB ở D. Giao của MO và AB là I. Chứng minh răng: a) Tủ giác MAOB nội tiếp. b) Tích AB.ADkhông đổi khi M di chuyển.
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ MC (C nằm trên nữa đường tròn và khác A) sao cho MA bằng MC. Nối M với O; MB cắt nửa đường tròn (O) tại D.
a. Chứng minh: AMCO là tứ giác nội tiếp đường tròn. Xác định tâm I của đường tròn.
b. Chứng minh: MC là tiếp tuyến; MC2 = MD.MB.
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA và MB đến (O)( A,B là hai tiếp điểm). Gọi MCD là cát tuyến của (O) (C nằm giữa M và D; tia MD nằm trong ∠OMB). Vẽ OE vuông góc với CD tại E.
Chứng minh: tứ giác MAEB nội tiếp đường tròn tâm I, xác định tâm I của đường tròn này.
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp