Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA và cát tuyến MBC với (O) (A là tiếp điềm, MB < MC, B và A nằm cùng một phía đối với MO). Kẻ đường kính AD của (O), MO cắt CD tại E. Gọi H là hình chiếu của A trên MO.
1) Chứng minh tứ giác AHEC là tứ giác nội tiếp.
2) Chứng minh: MBA đồng dạng với MAC và MB.MC = MH.MO.
3) Chứng minh góc BDC = 1/2 góc BHC và AE // BD.
Mình chỉ cần câu 3 thôi, thank mn trước nha
3: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
=>ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
=>MA^2=MB*MC
=>MH*MO=MB*MC
=>MH/MB=MC/MO
=>MH/MC=MB/MO
=>ΔMHB đồng dạng với ΔMCO
=>góc MHB=góc MCO
=>góc OHB+góc OCB=180 độ
=>OHBC nội tiếp
=>góc BHC=góc BOC
=>góc BHC=2*góc BDC(ĐPCM)