(ko cần vẽ hình, giải chi tiết)
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K.
1) Chứng minh: H là trung điểm của EF.
2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn.
3) Chứng minh: \(OK.OA=R^2\)
cho đương tròn (O,R)và một điểm A nằm ngoài đường tròn (O,R).Từ A vẽ hai điểm tiếp tuyến AB,AC của (O,R) ( B,C là tiếp điểm).Từ B vẽ đường kính BD của (O ,R), đường thẳng AD cắt (O,R) tại E (khác D) . CM 4 điểm A,B,C,O cùng thuộc 1 đường tròn
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn . Qua M vẽ hai tiếp tuyến MA , MB với đường tròn (O) trong đó A , B là hai tiếp điểm sao cho AMB = 90 độ . Qua điểm C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn (o) cắt MA , MB tại P vs Q .
CMR : 1/3 ( MA + MB ) < PQ < 1/2 ( MA + MB)
o l m . v n
cho đường tròn tâm o , các điểm b và c nằm trên đường tròn . các tiếp tuyến tại b và c cắt nhau tại a . gọi m là điểm của cung nhỏ bc . tiếp tuyến tại m cắt ab và ac theo thứ tự d và e . gọi giao điểm của od và oe với bc lần lượt là i và k
Chứng minh rằng :
a) các tứ giác OBDK , DIKE là tứ giác nội tiếp ,
b)ba đường thẳng OM , DK , EI đồng quy
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Vẽ Hình: Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M. Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B
Cho đường tròn ( O ; R ) và điểm A nằm ngoài đường tròn ( O ). Từ A kẻ 2 tiếp tuyến AE, AH đến đường tròn ( O ) ( E, H là các tiếp điểm ). EH cắt AO tại M
a) Cho biết bán kính R= 5cm và OM= 3cm. Tính độ dài dây EH và đoạn OA
b) C/m : EM = MH
c) Kẻ đường kính KH. I là trung điểm của EK. Tia AE cắt tia OI tại B. C/m BK là tiếp tuyến của đường tròn
d) C/m : OMEI là hcn và BK . AH = R\(^2\)
3. Cho đường tròn (O;3) và điểm A nằm ngoài đường tròn sao cho OA = 5.
Kẻ các tiếp tuyến AB, AC tới đường tròn (B, C là các tiếp điểm). Kẻ đường
kính CD của đường tròn.
a) Tính chu vi của tam giác BCD.
b) Kẻ BH vuông góc với CD tại H. Chứng minh rằng AD đi qua trung điểm
của BH