PTHĐGĐ là:
x^2-mx-5=0
a=1; b=-m; c=-5
Vì ac<0 nên (d) luôn cắt (P) tại hai điểm phân biệt
x1<x2; |x1|>|x2|
=>x1<0; x2>0
=>x1*x2<0
=>Luôn đúng
PTHĐGĐ là:
x^2-mx-5=0
a=1; b=-m; c=-5
Vì ac<0 nên (d) luôn cắt (P) tại hai điểm phân biệt
x1<x2; |x1|>|x2|
=>x1<0; x2>0
=>x1*x2<0
=>Luôn đúng
Cho parabol (P): y=2x2 và đường thẳng (d): y=4x-m
a) Tìm tọa độ giao điểm của đường thẳng (d) và (P) khi tham số m=6
b) Tìm tham số m để (d) cắt (P) tại hai điểm phân biệt A,B có hoành độ lần lượt là x1;x2 sao cho 2x1+x2= -5
Cho parabol (P): y= x2 và đường thẳng (d): y= mx +3. Tìm m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn điều kiện x13x2 + x1x23= -93
(mink đag cần gấp)
Cho parabol (P): y= -x2 và đường thẳng (d): y = mx -1
a) Chứng minh rằng với mọi m thì (d) luôn cắt (P) tại 2 điểm phân biệt.
b) Gọi x1; x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \(x_1^2x_2+x_2^2x_1-x_1x_2=3\)
Cho Pharabol ( P ) : y = x2 và đường thẳng ( d ) : y = - 2ax - 4a ( với a là tham số )
Tìm tất cả các giá trị của a để đường thẳng ( d ) cắt ( P ) tại 2 điểm phân biệt có hoành độ x1;x2 thỏa mãn / x1 / + / x2 / = 3
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
trong mặt phẳng tọa độ oxy cho parabol (p) y=3/2x^2 và đường thẳng (d):y=mx+2
a) vẽ đồ thị (p)
b) tìm tất cả các giá trị của m để (d)cắt (p) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1^2 +x2^2 -x1x2 =40
trong mặt phẳng toạ độ Oxy cho parabol y=3/2x^2 và đường thẳng (d) y=mx+4 a) vẽ đồ thị (P) b) Tìm tất cả giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1 , x2 thoả mãn x1^2+x2^2-x1x2 =24
Cho parabol (p) y=2x^2 và đường thẳng (d) y=3mx+1-m^2 (m là tham số) a. Tìm m để (d) đi qua A (-1; 9) b. Tìm m để (d) cắt (p) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1+x2 = 2x1×x2
Trên mặt phẳng Oxy, cho đường thẳng (d): y = -4 + m2 - 2 và parabol (P): y = x2
a) Chứng minh đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi m
b) Gọi x1, x2 là hoành độ hai giao điểm của (d) và (P). Tìm m để x1 ≤ 0 < x2