Phương trình hoành độ giao điểm:
\(x^2+2ax+4a=0\)
\(\Delta'=a^2-4a>0\Rightarrow\left[{}\begin{matrix}a>4\\a< 0\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2a\\x_1x_2=4a\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=3\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=9\)
\(\Leftrightarrow4a^2-8a+\left|8a\right|-9=0\)
TH1: \(a>4\Rightarrow4a^2-8a+8a-9=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{3}{2}\left(loại\right)\\a=-\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
TH2: \(a< 0\Rightarrow4a^2-16a-9=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{9}{2}\left(loại\right)\\a=-\dfrac{1}{2}\end{matrix}\right.\)