a, trong mặt phẳng tọa độ oxy cho đường thẳng : y= mx +n ( d) đi qua điểm m -5 ; 3 ) và điểm n (-3;5) .tìm m,n ?
b, cho phương trình : x2 -4nx + 12n -9 = 0 ( 1) ( m là tham số ) . tìm các giá trị của n để phương trình (1) có hai nghiệm x1 , x2 thỏa mãn đẳng thức : x1(x2+ 3 ) + x2(x1+ 3) -54 =0
( giải giúp mình bt này với ạ)
trong mặt phẳng toạ độ giao điểm của đường thẳng (d) y = (2m+5)x+2m+6 và parabol (P) y = x^2. tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thoả mãn |x1|+|x2|=7
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y=(m+2)x-m+3 và parabol (P): y=x2
a) Tìm tọa độ giao điểm của (P) và (d) khi m=3
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x21 + x22+ x1x2≤5
Trong hệ trục tọa độ Oxy, cho đường thẳng (d): y=6x+b và parabol (P): y=a\(x^2\) (a≠0)
a) Tìm giá trị của b để đường thẳng (d) đi qua điểm M(0;9).
b) Với b tìm được, tìm giá trị câu a để (d) tiếp xúc với (P).
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)
2) Trong mặt phẳng tọa độ Oxy cho đường thẳng d : y = 3x + \(m^2\) -1 và parabol (P) : y = \(x^2\)
a) Chứng minh d luôn cắt (P) tại hai điểm phân biệt với mọi m.
b) Gọi \(x_1\) và \(x_2\) là hoành độ các giao điểm của d và (P). Tìm m để \(\left(x_1+1\right)\left(x_2+1\right)=1\)
Cho hàm số bậc nhất y = (m - 2)x + m + 1 với m là tham số có đồ thị là đường thẳng (d).
1. Tìm m để (d) đi qua điểm A(1; -1). Vẽ (d) với m vừa tìm được.
2. Với giá trị nào của m thì (d) và đường thẳng (d’) : y = 1 - 3x song song với nhau?
3. Tìm m để khoảng cách từ gốc toạ độ O đến (d) = 1
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
a) Tìm các giá trị tham số m để phương trình x2 – (2m – 3)x + m(m – 3) = 0 có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = 4
b) Cho Parabol (P): \(y=-3x^2\) và đường thẳng (d): \(y=2x-m+9\) .Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
a.Cho parabol (P): y = x2 và đường thẳng (d): y = 3x - 2
Hãy tìm tọa độ giao điểm của đường thẳng (d) và parabol(P) bằng phương pháp đại số.
b.Cho phương trình x2 - 2(m + 1)x + 2m - 3 = 0
với m là tham số.Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.