a: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔBDC vuông tại B
=>BC vuông góc với BD
=>BD//OM
b: \(BM=\sqrt{13^2-5^2}=12\left(cm\right)\)
\(BI=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
=>BC=120/13(cm)
a: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔBDC vuông tại B
=>BC vuông góc với BD
=>BD//OM
b: \(BM=\sqrt{13^2-5^2}=12\left(cm\right)\)
\(BI=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
=>BC=120/13(cm)
cho đường tròn tâm o đường kính . từ a và b vẽ hai dây ac và bd song song với nhau . qua (o) vẽ đường thẳng vuông góc ac tại điểm m và vuông góc với bc tại điểm n Chứng minh : a)AC và BD b) OM và ON
Cho đường tròn tâm O, điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MB và MC với đường tròn ( B,C là 2 tiếp điểm). OM cắt BC tại I a) Chứng minh M,B,O,C cùng thuộc một đường tròn b) Kẻ đường kính BD của O. Cm MO vuông góc với BC và MO // CD c) Nối MD cắt (O) tại H. Cm MH.MD=MI.MO và góc MIH = góc OHD
Bài 7 (3 điểm). Từ điểm M ở ngoài đường tròn (O; R), vẽ hai tiếp tuyến MA, MB với đường tròn (0) (A, B là 2 tiếp điểm). OM cắt AB tại H. Vẽ đường kính BC của đường tròn (O).
a) Chứng minh OM 1 AB và AC // MO.
b) Chứng minh OH. OM = R2 và OCH = OMC
Cho đường tròn (O;R) có đường kính AB. Vẽ tiếp tuyến Ax, lấy M bất kì thuộc tia Ax, MB cắt đường tròn (O) tại C.
a) Chứng minh AC vuông góc với MB.
b) Tính BC.BM theo R.
c) Vẽ dây AD vuông góc với OM tại H. Chứng minh MD2 = MC.MB.
Các cậu giúp mình với, mình cảm ơn nhiều ạ ! (Vẽ hình giúp mình với ~ . ~)
Cho ba điểm A, B, C thẳng hàng (B nằm giữa A và C) vẽ đường tròn tâm O đường kính BC; AM là tiếp tuyến vẽ từ A (M là tiếp điểm). Từ M vẽ dây MN vuông góc với BC tại H. a) Chứng minh MB là tia phân giác của góc AMN; b) Từ B vẽ đường thẳng song song với MC, đường thẳng này cắt MN, MA lần lượt tại D và E. Chứng minh: AB.HC = AC. HB
Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O bán kính R tiếp xúc với AB,AC tại B,C.Đường thẳng qua điểm m trên BC vuông góc OM cắt tia AB,AC tại D,E
a) CM: 4 điểm O,B,D,M cùng thuộc 1 đường tròn
b) CM: MD=ME
Cho ( O,R ) dây CD kẻ OK vuông góc với CD cắt tiếp tuyến tại C của đường tròn tại điểm M.
a, Vẽ hình chính xác
b, Chứng minh MD là tiếp tuyến
c, Biết R=10cm, CD=16cm: Tính OM
Cho điểm M nằm ngoài (O;R) sao cho OM=2R. Kẻ 2 tiếp tuyến MA,MB với (O;R), ( A,B là tiếp điểm). Đoạn thẳng OM cắt (O;R) tại P và cắt AB tại H. Tia AO cắt (O;R) tại D và cắt MB tại K. Nối PK cắt BD tại G
a) Chứng minh MO song song với BD
b) Chứng minh OG vuông góc với BD
c) Tử trung điểm I của AH vẽ đường thẳng vuông góc với AO cắ đường tròn tại Q và J. Chứng minh MO là tiếp tuyến của ( A;AQ)