Cho đoạn thẳng AB và điểm M nằm giữa A và B. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ các tam giác đều MAC và MBD. Các tia AC và BD cắt nhau tại O
a) ΔAOB đều
b) MC=OD; MD=OC
c) AD=BC
d) Gọi I và K lần lượt là trung điểm của AD và BC. CMR: MI=MK và ΔMIK đều
e) Gọi E là giao điểm của AD và BC. Tính góc CEA=?
Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho \(\Delta ABC\), vẽ \(\Delta ABD\) vuông tại B có AB = BD (A, D thuộc 2 nửa mặt phẳng đối nhau bờ là đường thẳng BC) và \(\Delta BCG\) vuông tại B có BC = BG (A, G cùng nằm trên mặt phẳng có bờ là đường thẳng BC). Chứng minh:
a) AG = CD
b) CD _|_ AG
Cho tam giác ABC vuông tại A. Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc BC tại B lấy điểm D ( không cùng nửa mặt phẳng bờ BC với điểm A) sao cho AH= BD.
a) So sánh tam giác AHB và DBH.
b) Chứng minh AB// DH.
c) Đoạn thẳng AD cắt đoạn thẳng BH tại O. Chứng minh OA= OD, OB= OH.
1.Cho góc xOy < 180 độ và tia phân giác OM của góc đó. Trên tia OM lấy điểm I. Gọi E và F lần lượt là chân đường vuông góc kẻ từ điểm I đến Ox và Oy.
a) CM: △IOE = △IOF
b) CM: EF⊥OM
c) Tìm điều kiện của góc xOy để △OEF là △đều.
2. Cho O là điểm nằm giữa A và B của đoạn thẳng AB (O≠ A và B). Trên cùng một nửa mặt phẳng bờ AB vẽ các tia Ox, Oy sao cho góc AOx = góc BOy < 90 độ. Lấy điểm C ∈ tia Ox và điểm D ∈ tia Oy sao cho OC = OA và OD = OB. CMR : AD = BC.
1. Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM: tam giác AMC đều.
c) CM: MC \(\perp\) BC.
d) Tính DF và BD biết AD= 4cm.
Bài 1: Cho ΔABC, kẻ AH vuông góc với BC (H ∈ BC). Trên tia đối của tia HA, lấy điểm K sao cho HK = HA. Nối KB, KC. Tìm các cặp tam giác bằng nhau trong hình vẽ
Bài 2: Cho ΔABC có góc A = 90độ, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác góc B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD
b) Chứng minh: DA = DE
c) Tính số đo góc BED
Bài 3: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.
a) Chứng minh: AC = DB và AC//DB
b) Chứng minh: AD = CB và AD//CB
c) Chứng minh: góc ACB = góc BDA
d) Vẽ CH ⊥AB tại H.Trên tia đối của tia OH lấy điểm I sao cho OI = OH. Chứng minh: DI⊥AB
c) Tính các góc của tam giác MON
d) Chứng minh: AD⊥BC
Bài 7: Cho tam giác ABC có ba góc nhọn. Vẽ AH⊥BC (H ∈ BC). Vẽ HI⊥AB tại I, vẽ HK⊥AC tại K. Lấy E, F sao cho I là trung điểm của HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N.
a) Chứng minh MH = ME và chu vi ΔMHN bằng EF
b) Chứng minh AE = AF
c) Nếu biết góc BAC = 60độ . Khi đó hãy tính các góc của tam giác AEF
(Chu vi của một tam giác bằng tổng độ dài 3 cạnh của tam giác)
Bài 8: Cho tam giác ABC, Điểm D thuộc cạnh BC. Kẻ DE//AC (E ∈ AB), kẻ DF//AB (F ∈ AC) Gọi I là trung điểm của EF. Chứng minh I là trung điểm của AD
Bài 9: Cho góc xOy khác góc bẹt có Ot là tia phân giác. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự A và B
a. Chứng minh OA = OB
b. Lấy điểm C nằm giữa O và H. Chứng minh CA = CB
c. AC cắt Oy ở D. Trên tia Ox lấy điểm E sao cho OE = OD. Chứng minh B, C, E thẳng hàng.
Cho đoạn thẳng AB. O là trung điểm của AB . Trên cùng nửa mặt phẳng bờ AB vẽ tia Ax ; By cùng vuông góc với AD . Lấy C \(\in\) Ax, CO cắt tia đối của By tại D . Đường thẳng vuông góc với CO tại O cắt By . C/m :
a, △OAC = △OBD
b, △COE = △DOE
c, CE=AB+BE
d, C/m : OE là trung trực CD
Cho t/g ABC vuông tại A có AB=4cm, Ac=3cm. Trên AB lấy D sao cho AD=AC (D nằm giữa A và B), trên tia đối của Ca lấy E sao cho AE=Ab (C nằm giữa A và E). Kẻ AH \(\perp\) Bc. Đoạn thẳng AH cắt DE tại M (M nằm giữa D và E)
a/ Tính BC
b/ CMR t/g ABC = t/g AED
c/ CMR t/g AMD cân tại M