Từ điểm A nằm ngoài đường tròn kẻ 2 tiếp tuyến AB . AC tới đường tròn ( O ) và cát tuyến ADE ( D giữa A và E ) . Dây DE không đi qua O . Gọi H là trung điểm của DE . K là giao điểm AE và BC .
a , CMR 5 điểm A , B , H , O , C cùng nằm trên một đường tròn .
b , \(AB^2=AD.AE\)
c , \(\frac{2}{AK}=\frac{1}{AD}+\frac{1}{AE}\)
Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ hai tiếp tuyến SA và SA' (A và A' là tiếp điểm) và cát tuyến SBC (B nằm giữa C và S) với đường tròn. Phân giác của góc BAC cắt BC tại D, cắt đường tròn tại E. Gọi H là giao điểm của OS và AA', G là giao điểm của OE và BS, F là giao điểm của AA' và BC
a) Tam giác SAD là tam giác gì? Vì sao?
b) Cm SF . SG = SO . SH
c) SA^2 = SF . SG
Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC( B và C là tiếp điểm). Đường thằng đi qua A cắt (O) tại D và E ( D nằm giữa A và E), kẻ dây cung EN song song với BC, DN cắt BC tại I. Chứng minh rằng BI= CI
\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Cho đường tròn (O;R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a) CMR: OA vuông góc với BC và \(OH.OA=R^2\)
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuông góc với BD (K thuộc D). CMR: AO song song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK. CMR: Tam giác BIK và tam giác CHK có diện tích bằng nhau
Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ tiếp tuyến SA và cát tuyến SBC tới đường tròn. Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Kẻ tiếp tuyến SA’ với đường tròn (O). Gọi H là giao điểm OS và AA’ , G là giao của OE và BS; F là giao của AA’ với BC. Trên tia AC lấy điểm Q sao cho AQ = AB. Chứng minh AO vuông góc DQ.
Cho đường tròn (O) và một điểm A nằm ngoài (O). Dựng cát tuyến AMN không đi qua O, M nằm giữa A và N. Dựng hai tiếp tuyến AB, AB với (O) (B, C là hai tiếp điểm và C thuộc cung nhỏ MN). Gọi I là trung điểm của MN.
a, Chứng minh tứ giác ABOI nột tiếp.
b, Hai tia BO và CI lần lượt cắt (O) tại D và E (D khác B, E khác C). Chứng minh \(\widehat{CED}=\widehat{BAO}\).
c, Gọi K là giao điểm của BC và MN, H là giao điểm của BC và AO. Chứng minh \(\frac{AK}{AM}+\frac{AK}{AN}=2\).