Cho tam giác ABC có trung tuyến AM (M thuộc BC). Trên cạnh AB, AC lần lượt lấy hai điểm D, E sao cho AD = DE = EB. Gọi I là giao điểm của AM và CD. Chứng minh AI = IM.
Cho ΔABC. Trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của ΔABC lần lượt cắt CD, CF tại H và K.
a) Chứng minh GH, EK, AB đồng quy
b) Chứng minh AB = 4HK
4) Cho AM là đường trung tuyến tam giác ABC .Trên đoạn AB lấy 2 điểm D và E sao cho
AD=DE = EB .Gọi I là giao điểm của CD với AM . Chứng minh : AI = IM và DC = 4 DI
1. Cho tam giác ABC, các đường trung tuyến BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE song song và bằng IK. 2. Cho cho tam giác ABC, đường trung tuyến AM. Lấy điểm D thuộc AC sao cho DC = 2AD, gọi I là giao điểm của BD và AM. Chứng minh rằng AI = MI. 3.ChotamgiácABCvuôngtạiB,Â=600, phângiácAD.GọiM,N,Itheothứtựlà trung điểm của AD, AC, CD. a. Chứng minh rằng BMNI là hình thang cân. b. Tính các góc của tứ giác BMNI.
Cho tam giác ABC, trung tuyến AM. Trên cạnhAB lấy hai điểm D, E sao cho AD=DE=EB. Gọi I là giao điểm của ÂM và CD. Chứng minh:
A) EM//CD ; B) AI=IM ; C) DC=4DI
Cho tam giác ABC . trên cạnh AB lấy 2 điểm D, F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H, K.
a) chứng mình GH, EK, AB đồng qui.
b) chứng mình AB = 4HK.
Bài 4. Cho tam giác ABC, trên cạnh AC lấy các điểm D và E sao cho AD=DE = EC. Gọi M là trung điểm của BC , BD cắt AM tại I
a) Chứng minh ME // BD
b) Chứng minh I là trung điểm của AM
c) Chứng minh ID = 1/4 BD
Cho tam giác ABC và đường trung tuyến AM, trên cạnh AB lấy điểm D và E sao cho AD=DE=EB. Gọi I là giao điểm của CD và AM. Chứng minh:
a) AI=IM
b) ID= 1/4CD.
Cho tam giác ABC, trung tuyến AM, trên cạnh ac lấy điểm D, E sao cho AD = BE=EC . Gọi I là giao điểm của AM và DB. Chứng minh IA = IM