~ Tự vẽ hình nha ~
Chứng minh :
a) BD là phân giác của \(\widehat{ABC}\) ⇒ \(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)
CE là phân giác của \(\widehat{BCA}\) ⇒ \(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{CBD}+\widehat{BCE}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{BCA}}{2}=\dfrac{\widehat{ABC}+\widehat{BCA}}{2}=\dfrac{90^o}{2}=45^o\)
Có \(\widehat{BOC}+\widehat{OBC}+\widehat{BCO}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)⇒ \(\widehat{BOC}+45^o=180^o\)
⇒ \(\widehat{BOC}=180^o-45^o\)
⇒ \(\widehat{BOC}=135^o\)
b) Xét △BDA và △BDM có :
BA = BM ( gt )
\(\widehat{ABD}=\widehat{MBD}\text{ ( gt )}\)
BD - cạnh chung
⇒ △BDA = △BDM ( c.g.c )
⇒ \(\widehat{BAD}=\widehat{BMD}\text{ ( tương ứng )}\)
⇒ \(\widehat{BMD}\text{ }=90^o\)
Tương tự :
△EAC=△ENC ( c.g.c)
⇒ \(\widehat{EAC}=\widehat{ENC}\text{ ( tương ứng )}\)
Có \(\widehat{DMN}+\widehat{ENM}=90^o+90^o=180^o\)
Mà \(\widehat{DMN}\text{ và }\widehat{ENM}\text{ là 2 góc trong cùng phía }\)
⇒ EN // DM