a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó; ΔABD cân tại A
mà góc B=60 độ
nên ΔABD đều
b: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tạiE có
DA=DC
góc HDA=gócEDC
Do đó: ΔDHA=ΔDEC
Suy ra: AH=CE
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó; ΔABD cân tại A
mà góc B=60 độ
nên ΔABD đều
b: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tạiE có
DA=DC
góc HDA=gócEDC
Do đó: ΔDHA=ΔDEC
Suy ra: AH=CE
Cho ∆ABC vuông A, có góc C = 30 0 , kẻ AH
BC tại H. Trên HC lấy D sao cho
HD = HB. Từ C kẻ CE
AD tại E.
a.Chứng minh ∆ABD đều,
b.Chứng minh AH = CE.
c.EH // AC
d.Tính tỉ số
AD tại E.
a.Chứng minh ∆ABD đều,
b.Chứng minh AH = CE.
c.EH // AC
d.Tính tỉ số
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK song song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD.
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK sonh song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
. Cho tam giác ABC cân tại A. Kẻ AH BC (HÎBC).a) Chứng minh HB = HC. b) Kẻ HD AB (D Î AB), kẻ HE AC (E Î AC). Chứng minh rằng: HD = HE và DE // BC. c) Trên tia đối của tia HD lấy điểm F sao cho HF = HD. Chứng minh tam giác EDF vuông.
Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H BC)
a) Chứng minh : HB = HC và =
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( DAB), kẻ HE vuông góc với AC(EAC). Chứng minh : DE//BC
Làm hộ iem câu c ;-;
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
Cho ΔABC có góc B = góc C , kẻ AH vuông góc BC, H ∈ BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) AB = AC
b) ΔABD = ΔACE
c) ΔACD = ΔABE
d) AH là tia phân giác của góc DAE
e) Kẻ BK vuông góc AD, CI vuông góc AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CBlấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. 2 đường thẳng hb và kc cắt nhau tại o.Chứng minh a, tam giác Abd=tam giác ace; b,tam giác ade cân; c,tam giác dhb= tam giác ekc;d.tam giác boc cân;e.oa là tia phân giác của góc boc