Xét △ BCF và △ CBE có:
\(\widehat{B}=\widehat{C}\) ( △ ABC cân tại A )
BC chung
\(\widehat{E}=\widehat{F}\left(=90^0\right)\)
⇒ △ BCF = △ CBE
⇒ BE = CF ( 2 cạnh tương ứng ) (1)
Có \(\widehat{DCF}>90^0\) ⇒ DF > CF (2)
Từ (1) và (2) ⇒ DF > BE
Xét △ BCF và △ CBE có:
\(\widehat{B}=\widehat{C}\) ( △ ABC cân tại A )
BC chung
\(\widehat{E}=\widehat{F}\left(=90^0\right)\)
⇒ △ BCF = △ CBE
⇒ BE = CF ( 2 cạnh tương ứng ) (1)
Có \(\widehat{DCF}>90^0\) ⇒ DF > CF (2)
Từ (1) và (2) ⇒ DF > BE
1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB
Cho tg ABC, trung tuyến AM, AB<AC.. Trên tia đối của tia MA lấy E sao cho ME=MA, nối B voeis E
a, cm rằng BE=AC, BE song song với AC
b, Gọi D là trung điểm của AB. Trên tia đối của tia DE lấy F sao cho DF=DE. Cm A là trung điểm của CF
c, So sánh góc BAM và góc CAM
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
( Giúp mình câu D thôi cũng đc nhé )
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
cho ΔABC vuông tại A(AB<AC),tia phân giác góc B cắt AC tại M.Trên tia đối của tia MB lấy điểm D sao cho MB=MD,từ điểm D vẽ đường thẳng vuông góc với AC tại N và cắt BC tại điểm E.Chứng minh MN<MC
Cho △ABC vuông tại A có AB = 5cm, AC= 12cm.(có vẽ hình)
a) Tính BC.
b) So sánh các góc của △ABC.
c) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh △ABC = △ADC.
d) Đường thẳng qua A song song với BC cắt CD tại E. Chứng minh △EAC cân. (giúp tui nha mọi người ^-^)
Cho ΔABC cân tại A(BC>AB) có đường trung tuyến AI và trọng tâm G.
a, Biết AB=5cm;BC=8cm. Tính đôi dài của các đoạn thẳng AI,BG.
b, M∈tia đối của tia AC, AM=AB.N∈tia đối của tia CA, CN=CB. C/minh BN>BM
Bài 1: Cho tg ABC cân tại A, vẽ phía ngoài các tg đều ABE, ACD.
a. cm: tg BCD= tg CBE
b. Kẻ đg cao AH của tg ABC. cm: EC, BD, AH cùng đi qua 1 điểm
c. cm: ED // BC
Bài 2: Cho tg cân ABC (AB=AC), trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE
a. cm: Tg ADE là tg cân
b. Gọi M là trung điểm BC. cm: AM là phân giác của góc DAE
c. Từ B và C, kẻ BH vg góc với AD và vg góc với AE. cm: BH = CK
d. cm: HK // DE
e. cm: 3 đg thẳng AM, BH và gặp nhau tại 1 điểm
Bài 3: Cho tg ABC, các trung tuyến BE và CD. Trên tia đối tia EB, lấy I sao cho EI = EB. Trên tia đối tia D, lấy K sao cho DC = DK
a. cm: A là trung điểm của KI
b. Cho BK và CI cắt nhau tại F. cm: BI, CK, FA đồng quy tại G
c. Cho FA và BC cắt nhau tại P. cm: GP = 1/4 GF
Cho ΔABC cân tại A. Gọi M,N lần lượt là trung điểm của AB và AC, G là giao điểm của BM và Cm
a) Chứng minh AM = AN
b) Trên tia đối của tia NB lấy điểm K sao cho KN - NG. Chứng minh AG ∥ CK
c) Chứng minh BG = GK
d) Chứng minh BC + AG > 4GN
giúp mình với