Bài 1 : choDelta ABC vuông tại A . AH là đường cao . Gọi F, E lần lượt là hình chiếu vuông góc của H trên AB,AC
a, chứng minh : Delta ABHsimDelta CAH
b, chứng minh : AF.ABAE.ACAH2
c, chứng minh đường trung tuyến CM của Delta ABC đi qua trung điểm của HE
Bài 2 : cho Delta ABC cân tại A. Gọi M là trung điểm của cạch đáy BC , N là hình chiếu vuông góc của M trên cạch AC và O là trung điểm của MN
a, Delta AMCsimDelta MNC
b, AM.NCOM.BC
c, AOperp BN
Bài 3 : cho Delta ABC vuông tại A co AB6cm;...
Đọc tiếp
Bài 1 : cho\(\Delta ABC\) vuông tại A . AH là đường cao . Gọi F, E lần lượt là hình chiếu vuông góc của H trên AB,AC
a, chứng minh : \(\Delta ABH\sim\Delta CAH\)
b, chứng minh : AF.AB=AE.AC=AH2
c, chứng minh đường trung tuyến CM của \(\Delta ABC\) đi qua trung điểm của HE
Bài 2 : cho \(\Delta ABC\) cân tại A. Gọi M là trung điểm của cạch đáy BC , N là hình chiếu vuông góc của M trên cạch AC và O là trung điểm của MN
a, \(\Delta AMC\sim\Delta MNC\)
b, AM.NC=OM.BC
c, \(AO\perp BN\)
Bài 3 : cho \(\Delta ABC\) vuông tại A co AB=6cm; AC=8cm. Qua A kẻ một đường d song song với BC , vẽ CD\(\perp\) d ( tại D)
a, chứng minh \(\Delta ADC\sim\Delta CAB\)
b, tính DC
c, Tính diện tích hình thang vuông ABCD