Bài 1: Cho đa thức g(x) =\(\left\{{}\begin{matrix}2x-1;x\ge\frac{1}{2}\\-\left(2x-1\right);x< \frac{1}{2}\end{matrix}\right.\)Tìm giá trị nhỏ nhất của biểu thức M = \(\left|5x^2+5\right|+g\left(x\right)+2004-5x^2\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
1. Cho biểu thức:\(A=2x^2-5x-5\)
Tính giá trị của biểu thức \(x=-2,x=\dfrac{1}{2}\)
2.Cho biểu thức:\(D=\left(x^2-1\right).\left(x^2-2\right).\left(x^2-3\right).....\left(x^2-2015\right)\)
Tính giá trị biểu thức D tại \(x=\left(x^2+2010\right).\left(x-10\right)=0\)
3.Tìm giá trị nhỏ nhất của biểu thức:
\(a.A=\left(x-3\right)^2+9\)
b.\(\left(x-1\right)+\left(y+2\right)^2+10\)
c.\(\text{|}x-1\text{|}+\left(2y-1\right)^4+1\)
4.Tính giá trị lớn nhất của biểu thức:
a.\(P=-2.\left(x-3\right)^2+5\)
b.\(Q=\dfrac{5}{\left(x-14\right)^2+21}\)
5.Tìm x thuộc Z để \(A=\dfrac{x-5}{x-3}\) thuộc Z
chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến
a, \(x^2-2x-\left(3x^2-5x+4\right)+\left(2x^2-3x+7\right)\)
b,\(\left(2x^3-4x^2+x-1\right)-\left(5-x^2+2x^3\right)+3x^2-x\)
c, \(\left(1-x-\dfrac{3}{5}x^2\right)-\left(x^4-2x-6\right)+0,6x^2+x^4-x\)
1, Rút gọn biểu thức:
a) a-|a-1|
b)\(^{5^m-6.5^{m-2}}\)
2, Tìm giá trị nhỏ nhất của biểu thức:
A=|x-1004|+|x+1003|
3, Tìm x, biết:
a)\(x-1-\left(2x-3\right)=3x+1-2.\left(2x-\dfrac{1}{2}\right)\)
b)2x-3.|2x-1|=-1
1 (5 điểm)
a) Tính giá trị biểu thức: \(L=\left(-\dfrac{3}{4}+\dfrac{4}{11}\right):\dfrac{7}{11}+\left(-\dfrac{4}{7}+\dfrac{7}{11}\right):\dfrac{7}{11}\)
b) Tính giá trị nhỏ nhất của biểu thức: \(L=\left[\left(x+1\right)^2+3\right]^2+\left|y-5\right|+2008\)
2(4 điểm)
a) Tìm 3 số x;y;z thỏa mãn \(20x=15y=12z\) và \(2x^2+2y^2-3z^2=-100\)
b) Cho đa thức \(L_1\left(x\right)=x^2+2xm+m^2\) và \(L_2\left(x\right)=x^2+\left(2x+1\right)x+m^2\)
Tìm m biết \(L_1\left(1\right)=L_2\left(-1\right)\)
3(4 điểm)
a) Chứng minh \(5^{n+3}-3^{n+3}+5^{n+2}-3^{n+1}⋮60\) với mọi n thuộc N
b) Chứng minh \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2017}{4^{2017}}< \dfrac{1}{2}\)
6 điểm được free ạ =)))))
Tìm nghiệm của đa thức:
a.\(x^2-7x+12\).
b.\(2x^2-5x+2\).
c.\(P\left(x\right)=\left(x-3\right).\left(x+4\right)\).
d.\(Q\left(x\right)=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)\).
e.\(-4x+3\).
g.\(x^2+4x-3\).
h.\(x^2+4x+5\).
i.\(2x^2-2x+3\).
Giúp mình với @nguyen thi vang , @Nhã Doanh
Tìm giá trị nhỏ nhất của biểu thức sau:
a) A= \(3\left|2x-1\right|-5\)
b) \(C=x^2+3\left|y-2\right|-1\)
c) \(B=\dfrac{6}{\left|x-2\right|+3}\)
a) Cho \(M=\dfrac{42-x}{x-15}\) . Tìm số nguyên x để m đạt giá trị nhỏ nhất .
b) Tìm x sao cho \(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)