Tìm nghiệm của đa thức:
a.\(x^2-7x+12\).
b.\(2x^2-5x+2\).
c.\(P\left(x\right)=\left(x-3\right).\left(x+4\right)\).
d.\(Q\left(x\right)=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)\).
e.\(-4x+3\).
g.\(x^2+4x-3\).
h.\(x^2+4x+5\).
i.\(2x^2-2x+3\).
Giúp mình với @nguyen thi vang , @Nhã Doanh
\(d.Q=\left(\dfrac{1}{2}x-1\right).\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=0\)
\(\Rightarrow\dfrac{1}{2}x-1=0\Rightarrow x=2\)
e. \(-4x+3=0\Rightarrow-4x=-3\Rightarrow x=\dfrac{4}{3}\)
g. \(x^2+4x-3=0\Rightarrow x^2+2.2x+4-7=0\)
\(\Rightarrow\left(x+2\right)^2-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{7}\\-2-\sqrt{7}\end{matrix}\right.\)
h.
\(x^2+4x+5=0\)
Ta có:
\(x^2+4x+5=x^2+2.x.2+4+1=\left(x+2\right)^2+1>0\)
=> đa thức vô nghiệm
i)\(2x^2-2x+3=0\)
\(\Leftrightarrow\left(\sqrt{2}x\right)^2-2\sqrt{2}\cdot\dfrac{1}{\sqrt{2}}x+\left(\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(\sqrt{2}x-\dfrac{1}{\sqrt{2}}\right)^2+\dfrac{5}{2}=0\)(vô nghiệm)
a.
\(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b.
\(2x^2-5x+2=2x^2-4x-x+2=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(2x-1\right)\left(x-2\right)\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
c.
\(P\left(x\right)=\left(x+3\right).\left(x+4\right)\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
p/s: đến đây mới chợt nhận ra có điều bất thường , thiếu vế phải-.-
\(c,P_{\left(x\right)}=\left(x-3\right).\left(x-4\right)\)
Ta có: \(\left(x-3\right).\left(x-4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
Vậy \(x\in\left\{-4;-3\right\}\)