cho đa thức f(x)=\(ax^2+bx+c\)
ta có:f(0)=c\(\in\)z(1)
f(1)=a+b+c\(\in\)zmà c\(\in\)z
=>a+b\(\in\)z(2)
f(2)=4a+2b+c\(\in z\)mà c\(\in\)z
=>4a+2b\(\in\)z(3)
từ (3)(2)ta có( 4a+2b)-(a+b)=3a-b\(\in\)z
mà 3\(\in\)z=>a-b\(\in\)z(4)
từ (2)(4)=>a+b+a-b=2a\(\in\)
mà 2\(\in\)z=>a\(\in\)z(5)
=>a\(\in\)z mà a-b\(\in\)z=>b\(\in\)z(6)
từ (1)(5)(6)=>f(x) nguyên với mọi giá trị x nguyên