Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thư Nguyễn Nguyễn

Cho đa thức f(x) = a.x^3+b.x^2 +cx + d với các hệ số a,b,c,d nguyên. CMR nếu f(x) chia hết cho 5 với mọi x thì các hệ số a,b,c,d cũng chia hết cho 5

Nguyễn Kim Thảo
25 tháng 3 2017 lúc 20:50

Mình làm theo cách của bài185 trong sách "Nâng cao và phát triển toán 7 tập 2"của tác giả Vũ Hữu Bình nhé :

Vì f(x) chia hết cho 5 với mọi x thuộc Z

=>f(0) = a.\(0^3\)+b.\(0^2\)+c.0+d = d chia hết cho 5 ('1')

=>f(1) = a.\(1^3\)+b.\(1^2\)+c.1+d = a+b+c+d chia hết cho 5 ('2')

=>f(-1) = a.\(\left(-1\right)^3\)+b.\(\left(-1\right)^2\)+c.(-1)+d = -a+b-c+d chia hết cho 5 ('3')

=>f(2) = a.\(2^3\)+b.\(2^2\)+c.2+d = 8a+4b+2c+d chia hết cho 5 ('4')

Lấy (2)-(1) = a+b+c+d-d = a+b+c chia hết cho 5 ('5')

Lấy(2)+(3)-(1) = a+b+c+d-a+b-c+d-d = 2b chia hết cho 5 mà 2 không chia hết cho 5 => b chia hết cho 5 ('6')

Lấy (3)-(1)-(6) = -a+b-c+d-d-b = -a-c chia hết cho 5 ('7')

Lấy ('4')-('1')-4.('6')+2.('7') = 8a+4b+2c+d-d-4b+2(-a-c) = 8a+2c+(-2a)+(-2c) = 6a chia hết cho 5 (vì mỗi số hạng đều chia hết cho 5 đã cm ở trên)

Mà 6 không chia hết cho 5 => a chia hết cho 5 ('8')

Lấy ('7')+('8') = -a-c+a = -c chia hết cho 5 => -1.(-c) = c chia hết cho 5 ('9')

Vậy từ ('1');('2');('8');('9') => f(x) chia hết cho 5 với mọi x thuộc Z thì các hệ số a;b;c;d cũng chia hết cho 5

Nguyễn Kim Thảo
21 tháng 3 2017 lúc 21:40

Để f(x) chia hết cho 5 <=> a.x^3 +b.x^2 +cx +d cũng chia hết cho 5

<=>a.x^3 chia hết cho 5 và b.x^2 chia hết cho 5 và c.x chia hết cho 5 và d chia hết cho 5 (cùng xảy ra 1 lúc)

Mà x là mọi x nên theo tính chất chia hết của 1 tích ta có a,b,c,d phải chia hết cho 5 (đpcm)


Các câu hỏi tương tự
Nguyễn Thị Bình Yên
Xem chi tiết
Minh Hoang Hai
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
Ngọc Duyên
Xem chi tiết
Vương Hạ Nhi
Xem chi tiết
Trịnh Đức Thịnh
Xem chi tiết
Bích Phương
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Quân Nguyễn
Xem chi tiết