Cho đường tròn tâm O bán kính R. Lấy ba điểm A, B, C trên đường tròn đó sao cho \(AB=BC=CA\). Gọi I là điểm bất kì thuộc cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI với AB. Gọi N là giao điểm của BI với AC. Chứng minh :
a) \(\widehat{ANB}=\widehat{BCI}\)
b) \(\widehat{AMC}=\widehat{CBI}\)
cho hình bình hành abcd gọi IJ là trung điểm của BC và AD E là giao điểm của BI vs BD.F là giao điểm của DJ và AC.Chứng minh BI // DJ và EJ // IF
Cho đường tròn tâm O và điểm S ở ngoài đường tròn . Từ S kẻ hai tiếp tuyến SA và SD và cát tuyến SBC tới đường tròn ( B ở giữa S và C ).
a) Phân giác của góc BAC cắt dây cung BC ở M . Chứng minh SA = SM .
b) AM cắt đường tròn ở E. Gọi G là giao điểm của OE và BS; F là giao điểm của AD với BC . Chứng minh SA^2 = SG . SF .
c) Biết SB = a ; Tính SF khi BC = 2/3 a
Từ một điểm F ở bên ngoài đường tròn (O), vẽ 2 tiếp tuyến FA và FB (A,B là các tiếp điểm). Gọi M là trung điểm của FA, N là giao điểm của BM và đường tròn (O), D là giao điểm của FN và đường tròn (O).
Chứng minh: (chỉ cần câu c vì a và b đã làm đc rồi)
a) FO \(\perp\) AB
b) \(FA^2=FN.FD\)
c) Tứ giác AFBD là hình thang
Từ điểm M ở ngoài đường tròn (I) kẻ hai tiếp tuyến ME và MF ( E và F là hai tiếp điểm ) . Kẻ dây EG của đường tròn (I) song song MF. Gọi H là giao điểm của MG với (I) và K là giao điểm của EH với MF .
a) Chứng minh KF^2 = KE . KH .
b) Chứng minh K là trung điểm của MF .
Cho tam giác ABC cân taaij A , nội tiếp trong (O) . Trên cung nhỏ AC , lấy điểm D . Gọi S là giao điểm của AD vả BC , I là giao điểm của AC và BD
a) Chứng minh \(\widehat{ASC}=\widehat{DSA}\)
b) Chứng minh \(\widehat{DIC}+\widehat{ÁSB}=2.\widehat{ACB}\)
Các bn giúp mk với mk đang cần gấp.Mk cảm ơn nhìu♥♥♥
Bài 1: Cho đường tròn tâm O và điểm S ở ngoài đường tròn . Từ S kẻ hai tiếp tuyến SA và SD và cát tuyến SBC tới đường tròn ( B ở giữa S và C ).
a) Phân giác của góc BAC cắt dây cung BC ở M . Chứng minh SA = SM .
b) AM cắt đường tròn ở E. Gọi G là giao điểm của OE và BS; F là giao điểm của AD với BC . Chứng minh SA2 = SG . SF .
c) Biết SB = a ; Tính SF khi BC =\(\frac{2a}{3}\)
Cho đường tròn (O; r) có đường kính MQ. Các điểm N, P cùng thuộc đường tròn (O) sao cho MN = NP = PQ = r. Gọi R là giao điểm của MN và PQ. Gọi a là đường thẳng đi qua P và vuông góc với OP. Gọi b là đường thẳng đi qua M và vuông góc với MQ. Gọi S là giao điểm của a và b. Chứng minh rằng QRMˆ=PSMˆ.
Cho tam giác ABC nội tiếp trong đường tròn ( O ) . AD là tia phân giác của góc A ( D thuộc BC) . Gọi E là giao điểm của AD với đường tròn ( O)
a) Tiếp truyến của đường tròn tại A cắt BC ở I . Chứng minh rằng tam giác IAD là tam giác cân
b) Kẻ đường kính EOF . Gọi M là giao điểm của FA với BC . Chứng minh rằng M đối xứng với D qua I