a) Cho \(\sin\alpha=-\frac{3}{5}\left(\pi< \alpha< \frac{3\pi}{2}\right)\). Tính tan \(\alpha\)=?
b) Cho \(\alpha=\frac{\sqrt{3}}{3}\left(90^0< \alpha< 180^0\right)\). Tính cot \(\alpha\)=?
cho \(tan\alpha=\frac{2\sqrt{2}}{3}\) với \(0< \alpha< \frac{\pi}{2}\). tính gtri \(cos\left(\frac{29\pi}{2}-\alpha\right)\)
nếu \(tan\alpha+cot\alpha=4\) thì \(tan^2\left(\alpha+3\pi\right)+tan^2\left(\alpha+\frac{3\pi}{2}\right)=?\)
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
Cho \(sin\alpha=\frac{-2}{3}\); \(\alpha\in\) góc phần tư thứ (III).
a) Tính \(cos\alpha\), \(tan\left(\alpha+\pi\right)\)
b) Tính \(sin\left(\alpha+\frac{3\pi}{2}\right)\)
Cho \(tan\alpha=3\), \(\alpha\in\left(\pi;\frac{3\pi}{2}\right)\)
Tính \(tan\frac{\alpha}{2}\), \(tan4\alpha\), \(sin\left(\frac{\alpha}{2}+\frac{\pi}{4}\right)\)
a) Cho tan x=3 và \(\frac{\pi}{6}\)∠x∠\(\frac{\pi}{3}\) . Tính giá trị của biểu thức B =\(\frac{\cos^2x+\cot^2x}{\tan x-\cot x}\)
b) Cho cos α=\(\frac{-4}{5}\) và \(\frac{\pi}{2}\)∠α∠\(\pi\) . Tính giá trị của biểu thức A=\(\frac{3\sin2\alpha-\tan2\alpha}{\cos\alpha-\cos2\alpha}\)
c) Cho tan x=-2 và\(\frac{3\pi}{2}\)∠x∠\(2\pi\) . Tính giá trị của biểu thức B=\(\frac{\cos^2x+\sin2x}{\tan2x-\cos2x}\)
Bài 1 :
1/ A=(1+sinx)tan2 x(1-sinx)
2/ B=(1-sin2 x)cot2 x+1-cot2 x
3/ C=(tanx+1/tanx)2 - (tanx-1/tanx)2
Bài 2 :
1/ \(cos\alpha=\frac{1}{2}\) biết 0<\(\alpha< \frac{\pi}{2}\)
2/ sin\(\alpha=-\frac{2}{3}\) biết \(-\frac{\pi}{2}< \alpha< 0\)
3/ tan\(\alpha\) = \(-\sqrt{\frac{3}{3}}\) biết \(-\frac{\pi}{2}< \alpha< 0\)
4/ cot\(\alpha=-2\) biết \(\frac{3\pi}{2}< \alpha< 2\pi\)
Giúp mình với ạ mình cảm ơn .
cho sin α = 0,6 ; π < α < \(\frac{3\pi}{2}\). tìm cosα , tanα , cotα