\(\left(tana+cota\right)^2=16\)
\(\Leftrightarrow tan^2a+cot^2a+2=16\)
\(\Rightarrow tan^2a+cot^2a=14\)
\(tan^2\left(a+3\pi\right)+tan^2\left(a+\frac{3\pi}{2}\right)=tan^2a+cot^2a=14\)
\(\left(tana+cota\right)^2=16\)
\(\Leftrightarrow tan^2a+cot^2a+2=16\)
\(\Rightarrow tan^2a+cot^2a=14\)
\(tan^2\left(a+3\pi\right)+tan^2\left(a+\frac{3\pi}{2}\right)=tan^2a+cot^2a=14\)
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
Cho \(tan\alpha=3\), \(\alpha\in\left(\pi;\frac{3\pi}{2}\right)\)
Tính \(tan\frac{\alpha}{2}\), \(tan4\alpha\), \(sin\left(\frac{\alpha}{2}+\frac{\pi}{4}\right)\)
a) Cho \(\sin\alpha=-\frac{3}{5}\left(\pi< \alpha< \frac{3\pi}{2}\right)\). Tính tan \(\alpha\)=?
b) Cho \(\alpha=\frac{\sqrt{3}}{3}\left(90^0< \alpha< 180^0\right)\). Tính cot \(\alpha\)=?
cho \(\cos\alpha=\dfrac{-12}{13}\) biết \(\pi< \alpha< \dfrac{3\pi}{2}\)
tính \(\sin\alpha,cos2\alpha,tan\left(\alpha-\dfrac{\pi}{3}\right),sin\left(2\alpha+\dfrac{\pi}{6}\right)\)
cho \(tan\alpha=\frac{2\sqrt{2}}{3}\) với \(0< \alpha< \frac{\pi}{2}\). tính gtri \(cos\left(\frac{29\pi}{2}-\alpha\right)\)
Cho \(sin\alpha=\frac{-2}{3}\); \(\alpha\in\) góc phần tư thứ (III).
a) Tính \(cos\alpha\), \(tan\left(\alpha+\pi\right)\)
b) Tính \(sin\left(\alpha+\frac{3\pi}{2}\right)\)
cho sin α = 0,6 ; π < α < \(\frac{3\pi}{2}\). tìm cosα , tanα , cotα
Cho góc α thỏa mãn \(cot\alpha=-3\sqrt{2}\) và \(\frac{\pi}{2}< \alpha< \pi\). Tính \(P=tan\frac{\alpha}{2}+cot\frac{\alpha}{2}\)
cho sin α =\(\frac{-5}{13}\) và \(\frac{3\pi}{2}\) < α < π . Tìm sin α , tan α , cot α