3x2 + 3x2 + 4xy + 2x - 2y + 2 = 0
<=> 2(x2 + 2xy + y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)
M = (x + y)2017 + (x + 2)2018 + (y - 1)2019 = 02017 + (x + 1 + 1)2018 + 02019 = 12018 = 1