Cho các số x, y cùng dấu. CM rằng:
a) \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
b) \(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge0\)
c)\(\left(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}\right)-\left(\dfrac{x^2}{y^2}+\dfrac{x^2}{y^2}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
a)\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\)\(\ge0\)
Vậy \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
b) ta có: A=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)=\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
A\(\ge\)\(\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\)
=\(\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)
c) Từ câu b suy ra:
\(\left(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}\right)-\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)\ge0\)
Vì \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(câu a)
Nên:
\(\left(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}\right)-\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
Vì \(x;y\) cùng dấu \(\Rightarrow\dfrac{x}{y};\dfrac{y}{x}>0\)
Áp dụng Bất đẳng thức Cauchy cho các cặp số dương \(\left(\dfrac{x}{y};\dfrac{y}{x}\right);\left(\dfrac{x^2}{y^2};\dfrac{y^2}{x^2}\right);\left(\dfrac{x^4}{y^4};\dfrac{y^4}{x^4}\right)\)
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt[]{\dfrac{x}{y}.\dfrac{y}{x}}=2\left(1\right)\) \(\rightarrow câu.a\)
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\sqrt[]{\dfrac{x^2}{y^2}.\dfrac{y^2}{x^2}}=2\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)-\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge0\rightarrow câu.b\)
\(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}\ge2\sqrt[]{\dfrac{x^4}{y^4}.\dfrac{y^4}{x^4}}=2\left(3\right)\)
\(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\left(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}\right)-\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\rightarrow câu.c\)