\(\dfrac{2}{xy}-\dfrac{2}{y\left(x+y\right)}-\dfrac{2}{x\left(x+y\right)}=\dfrac{2\left(x+y\right)-2x-2y}{xy\left(x+y\right)}=0\)
\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{\left(x+y\right)^2}}\)
\(=\sqrt{\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{y}\right)^2+\left(\dfrac{1}{x+y}\right)^2+2\times\dfrac{1}{x}\times\dfrac{1}{y}-2\times\dfrac{1}{y}\times\dfrac{1}{x+y}-2\times\dfrac{1}{x}\times\dfrac{1}{x+y}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right)}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right|\left(\text{đ}pcm\right)\)