Vì a;b dương nên \(a^3-b^3< a^3+b^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)< a-b\)
\(\Rightarrow a^2+ab+b^2< 1\)
Vì a;b dương nên \(a^3-b^3< a^3+b^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)< a-b\)
\(\Rightarrow a^2+ab+b^2< 1\)
1) Cho 2 số dương x,y thỏa mãn: \(x^3+y^3=x-y\).Chứng minh rằng: \(x^2+y^2< 1\)
2) Cho 3 số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\). Chứng minh rằng: \(a^2+b^2< c^2\)
Chứng minh rằng không có 3 số dương a,b,c nào thỏa mãn cả 3 bất đẳng thức : \(a+\dfrac{1}{b}< 2\) ; \(b+\dfrac{1}{c}< 2\) ; \(c+\dfrac{1}{a}< 2\)
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
cho a,b,c > 0 chứng minh rằng:
a) \(\frac{a^3}{b}\) ≥ a2 + ab - b2
b) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\) ≥ ab+bc+ca
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4) ≥ ab3+a3b+2a2b2 với mọi a,b
Cho a,b,c,d thỏa mãn a+b=c+d ; \(a^2+b^2=c^2+d^2\)
Chứng minh rằng : \(a^{2013}+b^{2013}=c^{2013}+d^{2013}\)
cho a,b,c là các số thực
chứng minh rằng
a2+b2+c2+3\(\ge\)2(a+b+c)