Lời giải:
a)
Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)
\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)
\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)
Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)
Dấu "=" xảy ra khi $a=b$
b)
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{a^3}{b}+ab\geq 2a^2\)
\(\frac{b^3}{c}+bc\geq 2b^2\)
\(\frac{c^3}{a}+ac\geq 2c^2\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Mà cũng theo BĐT Cauchy:
\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)
\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$