cho xyz=2006
Chứng minh rằng :
\(\dfrac{2006x}{xy+2006x+2006}+\dfrac{y}{yz+y+2006}+\dfrac{z}{xz+z+1}=1\)
Cho 3 số x, y, z thỏa mãn \(x+y+z=3\)
tính GTLN của \(B=xy+yz+xz\)
1) Cho 2 số dương x,y thỏa mãn: \(x^3+y^3=x-y\).Chứng minh rằng: \(x^2+y^2< 1\)
2) Cho 3 số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\). Chứng minh rằng: \(a^2+b^2< c^2\)
cho x,y >0 và x+y =1
chứng minh rằng \(\frac{1}{xy}+\frac{2}{x^2+y^2}\ge8\)
cho x,y >0 và x+y\(\le\)1
chứng minh rằng A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\ge7\)
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
bài 3 chứng minh rằng nếu a,b là các số nguyên tố lớn hơn 2 thì a^3b- ab^2 chia hết cho 240
Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1
Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ.