Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tien Tien

cho biểu thức Q = \(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\) với x ≥ 0, x ≠ 4

a) Rút gọn Q

b) Tính giá trị của Q:

+ x = \(\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)         + x = \(\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

Shinee┊NQ
16 tháng 8 2022 lúc 16:39

`a.`\(Q=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\);\(x\ge0;x\ne4\)

\(Q=\left(\dfrac{\sqrt{x}-2+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

\(Q=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-2\right)\)

\(Q=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

`b.`

`@`\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(x=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(x=\left|5+\sqrt{2}\right|-\left|4+\sqrt{2}\right|\)

\(x=5+\sqrt{2}-4-\sqrt{2}\)

\(x=1\) thế vào `Q`

\(Q=\dfrac{\sqrt{1}+5}{\sqrt{1}+2}=\dfrac{6}{3}=2\)

`@`\(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

\(x=\dfrac{2}{\sqrt{4-2\sqrt{3}}}-\dfrac{2}{\sqrt{4+2\sqrt{3}}}\)

\(x=\dfrac{2}{\sqrt{\left(\sqrt{3}-1\right)^2}}-\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(x=\dfrac{2}{\left|\sqrt{3}-1\right|}-\dfrac{2}{\left|\sqrt{3}+1\right|}\)

\(x=\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(x=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(x=\dfrac{4}{2}=2\) thế vào `Q`

\(Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

 

Nguyễn Việt Lâm
16 tháng 8 2022 lúc 16:43

\(Q=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{1}{\sqrt{x}-2}\right)\)

\(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

b.

\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)

\(=5+\sqrt{2}-\left(4+\sqrt{2}\right)=1\)

\(\Rightarrow Q=\dfrac{1+5}{1+2}=2\)

\(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}=\dfrac{2}{\sqrt{4-2\sqrt{3}}}-\dfrac{2}{\sqrt{4+2\sqrt{3}}}=\dfrac{2}{\sqrt{\left(\sqrt{3}-1\right)^2}}-\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}=\dfrac{2\left(\sqrt{3}+1-\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{2.2}{2}=2\)

\(\Rightarrow Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

Tô Mì
16 tháng 8 2022 lúc 16:48

a. \(Q=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{7}{x-4}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)

\(=\dfrac{\sqrt{x}-2+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

Vậy : \(Q=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

 

b1. Ta có : \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}+4\right)^2}\)

\(=\left|\sqrt{2}+5\right|-\left|\sqrt{2}+4\right|=1\left(tmđk\right)\)

Thay giá trị x trên vào Q \(\Rightarrow Q=\dfrac{\sqrt{1}+5}{\sqrt{1}+2}=2\)

Vậy : Với \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\) thì Q = 2.

b2. 

Ta có : \(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2\left(2+\sqrt{3}\right)}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\dfrac{\sqrt{2\left(2-\sqrt{3}\right)}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}-\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{1}}-\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{1}}\)

\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|=2\left(tmđk\right)\)

Thay giá trị x trên vào Q \(\Rightarrow Q=\dfrac{\sqrt{2}+5}{\sqrt{2}+2}=\dfrac{8-3\sqrt{2}}{2}\)

Vậy : Với \(x=\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}\) thì \(Q=\dfrac{8-3\sqrt{2}}{2}\)


Các câu hỏi tương tự
em ơi
Xem chi tiết
Linh Bùi
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
ngoc linh bui
Xem chi tiết
nam anh đinh
Xem chi tiết
nam anh
Xem chi tiết
Đỗ ĐứcAnh
Xem chi tiết
Nam Thanh Vũ
Xem chi tiết