Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

Cho P=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

a)Rút gọn P

b)Tính giá trị của P khi \(9x^2-10x+1=0\)

c)Tính giá trị của P khi \(x=8-2\sqrt{7}\)

d)Tìm các giá trị của x để P=\(\dfrac{6}{5}\)

e)Tìm x sao cho P=\(\dfrac{x}{5\sqrt{x}-3}\)

f)Tính giá trị của P khi \(x=a^{12}+a^2b^2+b^{12}\) với a, b là các số thực thỏa mãn đồng thời \(a^2+a^2b^2=4\)\(a^2+a^2b^2+b^2=8\)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 23:34

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x}{3\sqrt{x}-1}\)

b) Ta có: \(9x^2-10x+1=0\)

\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào P, ta được:

\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)

c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)

\(=\dfrac{-10+16\sqrt{7}}{47}\)


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Đỗ ĐứcAnh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
em ơi
Xem chi tiết
2008
Xem chi tiết
Triết Phan
Xem chi tiết
Trang Nguyễn
Xem chi tiết
ngoc linh bui
Xem chi tiết