a, ĐKXĐ : \(2x-3\ge0\)
=> \(x\ge\frac{3}{2}\)
Ta có : \(P=x-2\sqrt{2x-3}\)
- Đặt \(t=\sqrt{2x-3}\left(t\ge0\right)\)
=> \(t^2=2x-3\)
=> \(x=\frac{t^2+3}{2}\)
- Thay vào P ta được : \(P=\frac{t^2+3}{2}-2t\)
b, Ta có : \(P=\frac{t^2+3-4t}{2}\)
=> \(P=\frac{t^2-4t+4-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
Ta thấy : \(\left(t-2\right)^2\ge0\forall x\)
=> \(\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Vậy \(Min_P=-\frac{1}{2}\) <=> \(t-2=0\)
<=> \(t=2\left(TM\right)\)
<=> \(\sqrt{2x-3}=2\)
<=> \(2x-3=4\)
<=> \(2x=7\)
<=> \(x=\frac{7}{2}\left(TM\right)\)