giả sử x,y\(\ge0\) thỏa mãn\(x^3+y^3+xy=x^2+y.\)Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=\dfrac{1+\sqrt{x}}{2+\sqrt{y}}+\dfrac{2+\sqrt{x}}{1+\sqrt{y}}\)
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
Cho các số thực dương a,b,c thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{x^2+z^2}=2015\)
Tìm giá trị nhỏ nhất của biểu thức: T=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
1)ghpt \(\left\{{}\begin{matrix}2x^2-y^2-xy-x-y=0\\\sqrt{2x+y-2}+2-2x=0\end{matrix}\right.\)
2)cho x,y,z dương thỏa xy+yz+zx=1
tìm MIN S=\(\dfrac{1}{4x^2-yz+2}+\dfrac{1}{4y^2-zx+2}+\dfrac{1}{4z^2-xy+2}\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=5. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{x+1}{1+y^2}\)+\(\dfrac{y+1}{1+z^2}\)+\(\dfrac{z+1}{1+x^2}\)
Cho các số thực dương x, y, z thỏa mãn : xyz=1.CMR:
\(\dfrac{1}{\left(\sqrt{xy}+\sqrt{x}+1\right)^2}+\dfrac{1}{\left(\sqrt{yz}+\sqrt{y}+1\right)^2}+\dfrac{1}{\left(\sqrt{xz}+\sqrt{z}+1\right)^2}\ge\dfrac{1}{3}\)
Giúp mk với , mk sắp thi r...
Tmf giá trị nhỏ nhất của biểu thức y=\(\sqrt{x^2+2x+3}\) +\(\sqrt{2x^2+4x+3}\)
cho x,y,z là các số thực dương thỏa mãn : xy+yz+zx=2016
c/m : \(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\)