ĐK: \(x\ge0\)
Vì P\(\ge\)0 => |P|\(\ge\)0\(\Rightarrow\left|P\right|=P\)
\(\Rightarrow\left|P\right|+P=\frac{2\sqrt{x}}{\sqrt{x}+2}=0\)
\(\Rightarrow x=0\)
Vậy x=0
ĐK: \(x\ge0\)
Vì P\(\ge\)0 => |P|\(\ge\)0\(\Rightarrow\left|P\right|=P\)
\(\Rightarrow\left|P\right|+P=\frac{2\sqrt{x}}{\sqrt{x}+2}=0\)
\(\Rightarrow x=0\)
Vậy x=0
Cho biểu thức \(G=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{1}{1-\sqrt{x}}-\frac{2\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)\) \(\left(x>0,x\ne1\right)\)
a. Rút gọn biểu thức G
b. Tìm x để G = 2
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
bài 1 : cho biểu thức
A = \(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
a, tìm điều kiện xác định của x để biểu thức A có nghĩa
b, Rút gọn biểu thức A
c, tính các giá trị cửa x để A>0
bài 2 giải phương trình
a, \(\sqrt{2}.x^2-\sqrt{98}=0\)
bài 3 cho biểu thức
A= \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1\left(x>0\right)\)
a, rút gọn biểu thức A
b, tìm x để A =2
Giúp mình với tối mai đi hc rồi
Cho biểu thức \(E=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) \(\left(x>0;x\ne1\right)\)
a. Rút gọn E
b. Tìm x để E >0
Cho biểu thức
a) Rút gọn P
b) Tìm các giá trị của x để P > 0
c) Tìm các giá trị của x để P = -1
\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}+\frac{\sqrt{x}}{2+\sqrt{x}}-\frac{4x+2\sqrt{x}-4}{x-4}\right):\left(\frac{2}{2-\sqrt{x}}-\frac{\sqrt{x}+3}{2\sqrt{x}-x}\right)\)
Cho biểu thức
a) Rút gọn biểu thức E
b) Tìm x để E = 2
E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
Cho biểu thức
a) Rút gọn biểu thức E
b) Tìm x để E = 2
\(E=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)
a) Rút gọn biểu thức P
b) Cho x=100, tính giá trị của P
c) Tìm GTNN của P
2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)
a) Rút gọn biểu thức A
b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên
Cho biểu thức \(A=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}+2}+\frac{2}{2-\sqrt{x}}\right):\left(\sqrt{x}+\frac{6-x}{\sqrt{x}+2}-2\right)\) \(\left(x\ge0;x\ne4\right)\)
a. Rút gọn biểu thức A
b. Tìm điều kiện của x để A nhận giá trị âm.