a) E= \(\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\frac{\sqrt{x}^2-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(a,đkxđ:x>0,x\ne1\)
\(E=\frac{\sqrt{x}.\sqrt{x}}{(\sqrt{x}-1).\sqrt{x}}-\frac{2\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-1)}\)
\(E=\frac{x-2\sqrt{x}+1}{\sqrt{x}(\sqrt{x}-1)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(b,ĐểP>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}>0.do\sqrt{x}>0\Rightarrow\)\(\sqrt{x}-1>0\Rightarrow x>1\)
b) E>0
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)
<=> \(\sqrt{x}-1>0\)
<=> x>1