câu 1 ; Cho biểu thức E=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) (x>0 , x khác 1)
a, Rút gọn E
b, Tìm x để E>0
Câu 2 Cho biểu thức G = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)\) (x>0 , x khác 1)
a, Rts gọn G
b, Tìm x để G=2
Bài 1:
\(a,E=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\)
Mà: \(\sqrt{x}>0\\ \Rightarrow\sqrt{x}-1>0\\ \Leftrightarrow\sqrt{x}>1\\ \Leftrightarrow x>1\)
Bài 2:
\(a,G=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\left(\sqrt{x}+1\right)\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\left(\sqrt{x}+1\right)\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)
( Tiếp )
\(b,G=2\Leftrightarrow\sqrt{x}-1=2\\ \Leftrightarrow\sqrt{x}=3\\ \Leftrightarrow x=9\)