Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Momozono Hisaki

1`,\(E=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)(x>0,x\(\ne\)1)

a,rút gọn E   b,Tìm x để E > 0

2,\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)\)   (x>0,x≠1)

a,rút gọn B      b,tìm x để G=2

Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 19:35

\(1,\\ a,E=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ b,E>0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}>0\Leftrightarrow\sqrt{x}-1>0\left(\sqrt{x}>0\right)\\ \Leftrightarrow x>1\\ 2,\\ a,B=\dfrac{x-\sqrt{x}+\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)\\ B=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,B=2\Leftrightarrow\sqrt{x}-1=2\left(\sqrt{x}+1\right)\\ \Leftrightarrow\sqrt{x}-1=2\sqrt{x}+2\\ \Leftrightarrow\sqrt{x}=-3\Leftrightarrow x\in\varnothing\)


Các câu hỏi tương tự
Triết Phan
Xem chi tiết
Nguyễn Thị Hồng Ngọc
Xem chi tiết
vũ thị lan
Xem chi tiết
vũ thị lan
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
hilo
Xem chi tiết
CandyK
Xem chi tiết
 Huyền Trang
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết