a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
bài 1, cho biểu thức: A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, Tìm điều kiện xác định, và rút gọn biểu thức A
b, Tính giá trị của A khi x=\(3-2\sqrt{2}\)
c, Tìm giá trị nhỏ nhất của A
bài 2, Cho biểu thức: A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức, ta được A=1 b, cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)tìm MAX A
1.Tính giá trị của biểu thức: A=\(\frac{\sqrt{x}+1}{\:\sqrt{x}-1}\) khi x=9
2.Cho \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot \frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x>0,x#1
a, Rút gọn P
b, Tính các giá trị của x để 2P=\(2\sqrt{x}+5\)
c,Với A,P là hai biểu thức ở trên,tìm x để \(\frac{A}{P}>2\)
bài 1: rút gọn biểu thức
a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)
b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)
c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)
bài 2: giải phương trình
c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)
b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1
a) rút gọn Q b) tính giá trị của Q khi x= 9
bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a) tìm điều kiện của x để biểu thức P xác định
b) rút gọn P
c) tìm giá trị của x để P< 0
Cho biểu thức:
A=\(\left(\frac{2\sqrt{x}}{\sqrt{x^3}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(2+\frac{2\sqrt{x}}{x+1}\right)\), với \(x\ge0\); \(x\ne1\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để \(A\le0\)
cho biểu thức P=\(\left(\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{3}{x-5\sqrt{x}+6}\right):\left(\frac{x+2}{\sqrt{x-3}}-\frac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
a) rút gọn P
b) tìm x để P≤-2
c) tìm giá trị của x để 2(x-4)P=3\(\sqrt{x^3+8}\)
Cho biểu thức \(A=\left(\dfrac{2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{4}{\sqrt{x}+1}\right)\)
a/ Rút gọn A với \(x\ge0,x\ne1\)
b/ Tìm x để A < 0
c/ Tìm số nguyên x để A có giá trị nguyên