b.
M=(1+\(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
M=(1+\(\sqrt{a}\))(1-\(\sqrt{a}\))
M=1-a
a) DKXĐ của pt là \(\left\{{}\begin{matrix}\sqrt{a}\ge0\\\sqrt{a}+1\ne\\\sqrt{a}-1\ne0\end{matrix}\right.0}\)
b)ta có :
M =\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
=\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)
= \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)^2\)
=\(1^2+2\cdot1\cdot\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)^2\)
=\(1+2\cdot\dfrac{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+\left(\dfrac{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)^2\)
=\(1+2\sqrt{a}+\sqrt{a}^2\)
=\(\left(1+\sqrt{a}\right)^2\)