Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đăng Khoa

cho biểu thức \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\),(với \(x\ge0,x\ne4\))chứng minh A>1

 

Dưa Hấu
11 tháng 7 2021 lúc 10:13

undefined

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 10:13

Ta có: \(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x-3-2x+8-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

Ta có: \(A-1=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-1\)

\(=\dfrac{\sqrt{x}+2-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}+1}>0\forall x\) thỏa mãn ĐKXĐ

hay A>1

HT2k02
11 tháng 7 2021 lúc 10:16

\(M=\dfrac{3\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+4}{\sqrt{x}+1}-\dfrac{9}{x-\sqrt{x}-2}\\ =\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{3\left(x-1\right)-2\left(x-4\right)-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=1+\dfrac{1}{\sqrt{x}+1}>1\)


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
illumina
Xem chi tiết
Hải Yến Lê
Xem chi tiết
phạm kim liên
Xem chi tiết
hải anh thư hoàng
Xem chi tiết
illumina
Xem chi tiết
illumina
Xem chi tiết
Lê Hương Giang
Xem chi tiết
TR ᗩ NG ²ᵏ⁶
Xem chi tiết