Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Yến Lê

Rút gọn biểu thức:

A=\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\) với \(x\ge0,x\ne4,x\ne9\)

Yeutoanhoc
15 tháng 7 2021 lúc 16:33

`A=((3sqrtx+6)/(x-4)+sqrtx/(sqrtx-2)):(x-9)/(sqrtx-3)(x>=0,x ne 4,x ne 9)`

`=((3(sqrtx+2))/((sqrtx-2)(sqrtx+2))+sqrtx/(sqrtx-2)):((sqrtx-3)(sqrtx+3))/(sqrtx-3)`

`=(3/(sqrtx-2)+sqrtx/(sqrtx-2)):(sqrtx+3)`

`=(sqrtx+3)/(sqrtx-2)*1/(sqrtx+3)`

`=1/(sqrtx-2)`

An Thy
15 tháng 7 2021 lúc 16:34

\(A=\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\)

\(=\left(\dfrac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}-3}\)

\(=\left(\dfrac{3}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\left(\sqrt{x}+3\right)=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}.\dfrac{1}{\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
16 tháng 7 2021 lúc 0:19

Ta có: \(A=\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

 


Các câu hỏi tương tự
illumina
Xem chi tiết
Lê Hương Giang
Xem chi tiết
hải anh thư hoàng
Xem chi tiết
TR ᗩ NG ²ᵏ⁶
Xem chi tiết
illumina
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Linh Nhi
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
Anh Quynh
Xem chi tiết