\(M=\left(\dfrac{1}{x-1}-\dfrac{1}{1-x^3}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{1}{x^2-1}\)
\(M=\left(\dfrac{1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}\right).\dfrac{\left(x+1\right)\left(x-1\right)}{1}\)
\(M=\left(\dfrac{1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right).\left(x+1\right)\left(x-1\right)\)
\(M=\dfrac{x+2}{\left(x-1\right)\left(x+1\right)}.\left(x+1\right)\left(x-1\right)\)
\(M=x+2\)
Với \(x=\dfrac{1}{2}\)
ta có: \(M=\dfrac{1}{2}+2=\dfrac{5}{2}\)
Để M có giá trị dương \(\Rightarrow M>0\)
\(\Leftrightarrow x+2>0\)
\(\Rightarrow x>-2\)