a, - Để biểu thức B luôn tồn tại thì :
\(n^2+5\ne0\)
Mà \(n^2+5>0\forall n\)
=> \(n^2+5\ne0\) ( luôn đúng )
Vậy phân số B luôn tồn tại .
b, Thay n = 0 vào phân số B ta được :
\(B=\frac{0-2}{0^2+5}=-\frac{2}{5}\)
Thay n = 0 vào phân số B ta được :
\(B=\frac{2-2}{2^2+5}=0\)
Thay n = -5 vào phân số B ta được :
\(B=\frac{-5-2}{\left(-5\right)^2+5}=-\frac{7}{30}\)
a) Ta có: \(n^2\ge0\forall n\)
\(\Rightarrow n^2+5\ge5>0\forall x\)
⇒Với ∀n thì \(n^2+5\ne0\)
⇒\(B=\frac{n-2}{n^2+5}\) luôn xác định được giá trị(đpcm)
b) Thay n=0 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{0-2}{0^2+5}=\frac{-2}{5}\)
Thay n=2 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(B=\frac{2-2}{2^2+5}=\frac{0}{9}=0\)
Thay n=-5 vào phân số \(B=\frac{n-2}{n^2+5}\), ta được
\(\frac{-5-2}{\left(-5\right)^2+5}=\frac{-7}{30}\)
Vậy: \(-\frac{2}{5};0;\frac{-7}{30}\) lần lượt là ba giá trị của phân số \(B=\frac{n-2}{n^2+5}\) tại lần lượt n=0; n=2 và n=-5