\(\Leftrightarrow A=\frac{3\left(x^2+x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}-\frac{x^2+x-2}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{3x^2+3x-3-x^2+4+x-1-x^2-x+2}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
b/Ta có x+1>x-1\(\Rightarrow A\le0\Rightarrow x+1\le0\Leftrightarrow x\le-1\)
c/\(A=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\Rightarrow A\in N\Leftrightarrow x-1\in\left(1,2\right)\Rightarrow x=\left(3,2\right)\)