a) \(A=2x+\sqrt{x^2-2x+1}\)
\(\Leftrightarrow2x+\sqrt{\left(x-1\right)^2}\)
\(\Leftrightarrow2x+\left|x-1\right|\) (1)
TH1: \(x-1\ge0\Rightarrow x\ge1\)
(1) => \(2x+x-1=3x-1\)
TH2: \(x-1< 0\Rightarrow x< 1\)
(1) => \(2x+1-x=x+1\)
b) Để A = 1 thì
\(\left\{{}\begin{matrix}3x-1=1\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\x=0\end{matrix}\right.\)
Vậy để A = 1 thì x = \(\dfrac{2}{3}\) hay x = 0