Áp dụng BĐT Cauchy schwarz dạng phân thức ta có :
\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\ge\dfrac{\left(a+b+c\right)^2}{3}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)
( vì \(a^2+b^2+c^2\ge ab+bc+ca\) )
Xảy ra đẳng thức khi và chỉ khi a=b=c= \(\sqrt{\dfrac{1}{3}}\)